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We show that linear congruential pseudo-random-number generators can cause systematic errors in Monte
Carlo simulations using the Swendsen–Wang algorithm, if the lattice size is a multiple of a very large power
of 2 and one random number is used per bond. These systematic errors arise from correlations within a single
bond-update half-sweep. The errors can be eliminated(or at least radically reduced) by updating the bonds in
a random order or in an aperiodic manner. It also helps to use a generator of large modulus(e.g., 60 or more
bits).
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I. INTRODUCTION

It has been known for about two decades that linear con-
gruential pseudo-random-number generators[1] suffer from
strong long-range correlations[2–6]: for instance, generators
with modulusm=2b have strong correlations at lags that are
multiples of 2k whenever the ratiok/b is large enough[2–4].
Furthermore, these long-range correlations are known to give
rise to systematic errors in Monte Carlo simulations employ-
ing local (e.g., Metropolis or heat bath) updates whenever
the lattice sites are updated in a fixed order and the number
of random numbers used per sweep is a multiple of a large
enough power of 2: this happens because one is using
strongly correlated random numbers to update the same lat-
tice sites in successive sweeps(within roughly one autocor-
relation time) [2,3,7–10]. On the other hand, these systematic
errors can be eliminated by the simple expedient of throwing
away one random number at the end of each lattice sweep
[2,3,7–10].

It has generally been thought that nonlocal algorithms
such as the Swendsen–Wang algorithm[11] and Wolff’s
single-cluster variant[12] would be immune to these particu-
lar defects of linear congruential generators, inasmuch as
they employ random numbers in a highly aperiodic way both
in “space” and in “time.” We were therefore astonished to
find, in our Swendsen–Wang simulation of the three-
dimensional Ising model[13], large systematic errors on the
1283 and 2563 lattices that we eventually traced(after much
wringing of hands) precisely to long-range correlations in the
random-number generator.

Recall that one iteration of the Swendsen–Wang(SW)
algorithm consists of two steps: first one updates the bond
occupation variables at a fixed configuration of the Ising spin
variables; then one computes the connected clusters associ-
ated to the bond configuration and updates the Ising spin
variables by choosing a new spin value independently for
each cluster. The second(spin-update) half of the SW algo-
rithm indeed uses random numbers in a thoroughly aperiodic

way, because the cluster sizes and shapes are random. But
the first(bond-update) half uses random numbers in a highly
structured way: typically one sweeps the bonds of the lattice
in some simple fixed order(e.g., lexicographic). Therefore, if
the lattice size is very large, the effects of the long-range
correlations of the random-number generator can be ob-
servedwithin a single half-sweep: the random numbers used
in updating the bonds of one part of the lattice will be
strongly correlated with those used elsewhere in the lattice.
One may expect this correlation to cause systematic errors
particularly if (a) the lattice size is commensurate with the
lag giving rise to long-range correlations(e.g., a power of 2),
and(b) the system’s correlation length is large enough so that
the long-range correlations of the random-number generator
couplecorrelatedparts of the lattice.

The purpose of this Brief Report is, first of all, to provide
evidence that such systematic errors can indeed occur and
that we have accurately diagnosed their origin; and secondly,
to show how the implementation of the Swendsen–Wang al-
gorithm can be modified so as to eliminate(or at least radi-
cally reduce) these systematic errors. A more detailed ac-
count will be published elsewhere[14].

II. EVIDENCE OF SYSTEMATIC ERRORS

We simulated the nearest-neighbor three-dimensional
Ising model on anL3L3L simple-cubic lattice with peri-
odic boundary conditions, using the Swendsen–Wang(SW)
algorithm[11]. We studied lattice sizesL=4, 6, 8, 12, 16, 24,
32, 48, 64, 96, 128, 192, and 256, and performed between
107 and 108 SW iterations for each lattice size. We did all our
runs atb=0.221 654 59, which is Blöteet al.’s best estimate
of the critical temperature[15] and is very near to the esti-
mates of other workers[16,17] (see also the review[18]). We
measured a large number of observables, including the sus-
ceptibility x, the second-moment correlation lengthj, the
energyE, and the specific heatCH.

In the first version of our program, the random numbers
were supplied by a linear congruential generator with modu-
lus m=248, incrementc=1, and multipliera=31 167 285,
10 430 376 854 301, 77 596 615 844 045, or
181 465 474 592 829. All these multipliers give good results
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on the spectral test in low dimensions, compared to other
multipliers for the same modulus[1,19]. We verified that the
runs with the four different multipliers gave results that are
consistent within error bars for all the major observables;
after making this verification, we averaged all the runs for
eachL.

The results for the correlation lengthj are reported in the
first two columns of Table I. Finite-size-scaling theory pre-
dicts thatj /L should behave for largeL (if indeed we are at
the critical temperature) as

j/L = x! + AL−v + ¯ , s1d

wherex* is a universal amplitude ratio characteristic of the
given system with periodic boundary conditions,v is a
correction-to-scaling exponent,A is a nonuniversal
correction-to-scaling amplitude, and the dots indicate higher-
order corrections to scaling. The data in Table I are qualita-
tively consistent with Eq.(1), except for the points at L
=128 and L=256,which show extremely large deviations.

A closer examination of the data in Table I reveals that the
point at L=192 may also exhibit a small but statistically
significant deviation from the fitting curve. To make all these
observations more quantitative, let us perform a weighted
least-squares fit to Eq.(1) with v=0.82 (the best estimate
from [15]), using all the data withLminøLø96 and varying
Lmin while checking the goodness of fit. A good fit(x2

=3.85, 6 DF, confidence level5 70%) can be obtained al-
ready withLmin=8, yielding

j/L < 0.64299s8d − 0.02931s79dL−0.82. s2d

Not surprisingly, the pointsL=4 andL=6 show significant
deviations from the fit curve, due to higher-order corrections
to scaling. More surprising are the pointsL=128, which lies
roughly 3% (<79 standard deviations) below the fit curve,
and L=256, which lies a whopping 21%(<170 standard
deviations) above the fit curve. Clearly, there are large sys-
tematic errors on the latticesL=128 andL=256. Finally, the
point L=192 lies approximately 0.2%(<3 standard devia-
tions) above the fit curve: thismayindicate the presence of a
small systematic error also for this lattice.

At first we worried whether we had made a programming
error that might lead to incorrect results on large lattices
(e.g., due to integer overflow). We checked the program care-
fully and were unable to find any such mistakes. Moreover,
the fact that the systematic discrepancy is much smaller(if it
exists at all) at L=192 than atL=128 suggests that the
problem—whatever its cause—does not arisesolelyfrom the
lattice being large.

Intrigued by the fact that these large discrepancies might
be arising only at lattice sizes that are large powers of 2(or
perhaps multiples of large powers of 2), we made shorter
runs (between 33104 and 106 SW iterations) at many other
lattice sizes—all multiples of 2 from 4 through 140, and all
multiples of 10 through 250—in order to check whether any
other deviant points could be found. The upshot is that—to
within the statistical error of these shorter runs, which ranges
from 0.2% on small lattices to 1% atL<128 to an admit-
tedly rather crude 2.3% on the largest lattices—there are no
detectable discrepancies except atL=128 and 256.

At L=128 andL=256, we found discrepancies not only
for the correlation length but also for the susceptibility, the
energy, and the specific heat. It is a curious fact, however,
that all the Fortuin-Kasteleyn identities[Ref. [20], Eqs.
(3.20)–(3.23)] are verified perfectly(to within statistical er-
ror). This contrasts with the systematic errors found by Dam-
gaard and Heller[8] in a Metropolis Monte Carlo simulation
of theUs1d Higgs model, where a Ward identity was violated
by up to 10 standard deviations, and those found by Balles-
teros and Martín-Mayor[21] in a Wolff single-cluster simu-
lation of the two- and three-dimensional Ising models, in
which Schwinger–Dyson identities were violated by up to
eight standard deviations.

III. VARIANT SIMULATIONS

In the Introduction, we have argued that long-range cor-
relations in the random-number generator can cause undes-
ired correlations within a single bond-update half-sweep,
leading to systematic errors. In order to test whether our
proposed explanation for the observed systematic errors is
the correct one, we ran variant simulations in which two
aspects of the simulation were systematically altered: the
modulusm=2b of the random-number generator(b=16, 20,
24, 28, 32, 40, 48, 60, 63, and 64), and the manner in which
the random numbers are used within the bond-update sub-
routine. The latter test is essential if we are to prove not only
that the trouble comes from the random-number generator,

TABLE I. Results of our Swendsen–Wang simulations on the
three-dimensional Ising model at criticality, using a linear congru-
ential generator with modulusm=248. Error bar(one standard de-
viation) is shown in parentheses. The row markedL=` indicates
our best estimate of the asymptotic valuex* . The last two columns
indicate the deviation of each point from the fit curve(2), in percent
and in standard deviations. Points deviating by more than 3s are
marked in boldface.

L j /L deviation(%) deviationssd

4 0.63000(9) −0.566% −17.48s

6 0.63576(10) −0.076% −3.24s

8 0.63769(10) 0.004% 0.44s

12 0.63909(11) −0.013% −0.83s

16 0.63998(8) 0.002% 0.15s

24 0.64093(13) 0.015% 0.83s

32 0.64122(13) −0.010% −0.51s

48 0.64172(10) −0.007% −0.51s

64 0.64223(16) 0.032% 1.44s

96 0.64219(16) −0.017% −0.76s

128 0.62215(25) −3.159% −78.94s

192 0.64383(38) 0.192% 3.23s

256 0.77798(79) 21.052% 169.69s

` 0.64299(8)
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but more specifically that it comes from the way that the
random numbers are usedin the bond-update subroutine.

All of the multipliers used here give good results on the
spectral test in low dimensions compared to other multipliers
for the same modulus.1 The purpose of trying random-
number generators with fewer than 48 bits was to induce
systematic errors on small lattices where they could be stud-
ied quantitatively to high precision and compared with those
observed with the 48-bit generator on larger lattices. The
purpose of trying random-number generators with 60/63/64
bits was, of course, to provide a standard of comparison in
which the systematic error is eliminated or at least radically
reduced.

We also tried three variants of the bond-update subrou-
tine:

Standard. This is our original program, in which the
bonds are updated in lexicographic order, and one random
number is used per bond.

Aperiodic. Here the bonds are again updated in lexico-
graphic order, but a random number is used only if the two
spins are equal.(If the two spins are unequal, the correspond-
ing bond is automatically left unoccupied, so no random
number is needed.) If our explanation of the cause of the
systematic errors is correct, this strategem should eliminate
the systematic errors on lattices that are multiples of large
powers of 2, though it may conceivably shift those system-
atic errors to other lattice sizes(namely, those for which the
lattice size, multiplied by the fraction of nearest-neighbor
spins that are equal, yields a suitable “resonance”).

Shuffle. The bonds are updated in a random order.2 If our
explanation of the cause of the systematic errors is correct,
this strategem should entirely eliminate the systematic errors,
even with a relatively poor(e.g., 32-bit) random-number
generator.

Our first version of the “shuffle” subroutine permuted the
array containing the bond indices. Unfortunately, this pro-
gram ran very slowly—about a factor of 2 slower than the
“standard” version atL=16, growing to a factor<8 at L
=256—probably because the highly nonlocal access to the
bond array caused a large number of cache misses. Our sec-
ond version permuted instead the array of random numbers;3

this is statistically equivalent but allows the bond array to be
accessed in sequential order. This program ran less slowly,
once again about a factor of 2 slower than the “standard”
version atL=16, but growing only to a factor<4 at L
=256.

The results of all these variant simulations, carried out on
lattice sizesL=8, 16, 32, 64, 96, 128, 192, and 256 will be
reported elsewhere[14]; here we provide only a brief sum-
mary. We find that the 60/63/64-bit generators give consis-
tent results(within statistical error) for all three variants of
the bond-update subroutine, confirming our expectation that
they exhibit negligible systematic error on latticesLø256.4

By contrast, each “standard” algorithm withø48 bits exhib-
its detectable systematic errors whenever the lattice sizeL is
a multiple of a sufficiently large power of 2; how large de-
pends on the modulus. More precisely, the 16-bit(resp. 20-
bit, 24-bit, 28-bit, 32-bit, 40-bit, 48-bit) standard algorithm
exhibits detectable systematic errors wheneverL is a mul-
tiple of 8 (resp. 8, 8, 16, 32, 64, 128). In addition, the 48-bit
“standard” algorithm atL=192 shows a discrepancy of al-
most 3s, which may indicate a systematic error. No other
statistically significant discrepancies are observed.

We conclude that, if one wants to use a linear congruential
generator with the Swendsen–Wang algorithm, the safest ap-
proach is to use a generator of 64 bits(or more) together with
the “shuffle” bond update. Unfortunately, the shuffle method
is somewhat slow. A much faster—and, as far as we can tell,
also safe—method is to use a 64-bit generator together with
the “aperiodic” bond update.

Despite the known problems of linear congruential gen-
erators arising from long-range correlations, there are still
several advantages in using them. First, they are relatively
cheap in terms of CPU time, and are convenient for use in a
series of successive runs because the complete state of the
generator can be saved in a single computer word. More
importantly, they are well understood theoretically, as re-
gards both short-range[1] and long-range[2–6,14] correla-
tions; in particular, excellent equidistribution oft-tuples of
successive random numbers for smallt can be achieved by
careful choice of the multiplier. By contrast, for more exotic
random-number generators(e.g., combination generators),
the problems may not be absent, but simply hidden.

A more detailed analysis of these simulations will be pub-
lished elsewhere[14], along with a discussion of the advan-
tages and disadvantages of linear congruential versus other
types of pseudo-random-number generators(see also
[21–24]).
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1For moduli 232, 240, 248, 260, 263, and 264, these multipliers can
be found in published tables of multipliers that perform well on the
spectral test[1,19]. We double-checked these computations, and
performed analogous computations from scratch for the smaller
moduli.

2A uniform random permutation ofn elements can easily be gen-
erated, in a time of ordern, using n−1 random numbers random
numbers[Ref. [1], pp. 139–140].

3More precisely, it permuted a LOGICAL array containing the
results of the comparisons of the random numbers againstp=1
−e−2b. This requires only one byte storage per bond, rather than
eight bytes for storing the random number itself, thereby reducing
both memory usage and cache misses during the generation of the
random permutation.

4We are continuing runs on the latticeL=256 in an effort to detect
very small systematic errors. These results will be reported later
[14].
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